Skip to main content

Featured

Mars and Earth - Small difference & big consequences

Einstein's theory of relativity suggests that time is not a constant and can vary based on gravitational fields and speed. In a strong gravitational field, time moves slower compared to a weaker one. Since Mars has a weaker gravitational field than Earth, time actually flows slightly faster there.  This concept has implications for future space missions, as the timing of communication and operation of spacecraft will need to account for this difference in how time elapses on Mars compared to Earth. Missions may need to adjust their schedules, operations, and technology to ensure accuracy and synchronization with Earth. Basically, the moment you bring gravity and velocity into the picture, time stops behaving like the simple, universal tick‑tock we experience in everyday life. And you’re absolutely right: Mars’ weaker gravity means clocks there run a little faster than clocks on Earth. What’s fascinating is how small the difference is—and how big the consequences become ...

Evidence of new magnetic transitions in late-type dwarfs from Gaia DR2

Since the second Gaia data release on the 25th April 2018, astrophysicists have had at their disposal an unprecedented wealth of information not only on distances and motions of stars in the galaxy, but also on many other stellar parameters that came along by exploiting the instrumentation aboard the satellite and the unique characteristics of the mission. Multiple observations of the same star, required to derive its distance and motion, also produced parameters related to stellar variability. Data for stars with spots on the surface similar to those on our Sun, in particular, provide information on their rotation period and on their surface magnetic fields. Stellar spots generated by magnetic fields at the surface modulate the stellar brightness as it rotates, making it possible to derive the star's rotation period and to provide an indication of its magnetic activity. The large number of stars observed made it possible to produce, with just the first 22 months of Gaia observations, the largest dataset on rotation to date, with rotation period and modulation amplitude of some 150,000 solar-like stars.

from Astronomy News - Space News, Exploration News, Earth Science News, Earth Science http://bit.ly/2K82PxH

Comments

Popular Posts