Skip to main content

Featured

Mars and Earth - Small difference & big consequences

Einstein's theory of relativity suggests that time is not a constant and can vary based on gravitational fields and speed. In a strong gravitational field, time moves slower compared to a weaker one. Since Mars has a weaker gravitational field than Earth, time actually flows slightly faster there.  This concept has implications for future space missions, as the timing of communication and operation of spacecraft will need to account for this difference in how time elapses on Mars compared to Earth. Missions may need to adjust their schedules, operations, and technology to ensure accuracy and synchronization with Earth. Basically, the moment you bring gravity and velocity into the picture, time stops behaving like the simple, universal tick‑tock we experience in everyday life. And you’re absolutely right: Mars’ weaker gravity means clocks there run a little faster than clocks on Earth. What’s fascinating is how small the difference is—and how big the consequences become ...

Simulations explain giant exoplanets with eccentric, close-in orbits

As planetary systems evolve, gravitational interactions between planets can fling some of them into eccentric elliptical orbits around the host star. Smaller planets should be more susceptible to this gravitational scattering, yet many gas giant exoplanets have been observed with eccentric orbits. In fact, the planets with the highest masses tend to be those with the most eccentric orbits. A new study explains these counter-intuitive observations.

from Extrasolar Planets News -- ScienceDaily https://ift.tt/2N10wxF

Comments

Popular Posts