Skip to main content

Featured

Mars and Earth - Small difference & big consequences

Einstein's theory of relativity suggests that time is not a constant and can vary based on gravitational fields and speed. In a strong gravitational field, time moves slower compared to a weaker one. Since Mars has a weaker gravitational field than Earth, time actually flows slightly faster there.  This concept has implications for future space missions, as the timing of communication and operation of spacecraft will need to account for this difference in how time elapses on Mars compared to Earth. Missions may need to adjust their schedules, operations, and technology to ensure accuracy and synchronization with Earth. Basically, the moment you bring gravity and velocity into the picture, time stops behaving like the simple, universal tick‑tock we experience in everyday life. And you’re absolutely right: Mars’ weaker gravity means clocks there run a little faster than clocks on Earth. What’s fascinating is how small the difference is—and how big the consequences become ...

The rotation of Venus

Venus is covered in a thick layer of clouds, one reason that it appears so bright in the sky. Ancient astronomers had a good idea of what (since Copernicus) we know as its orbital period; the modern measurement is that Venus takes 224.65 days to complete one revolution around the Sun, a Venusian year. Because of the clouds, however, it has been difficult to measure the length of the Venusian day since the nominal method of watching a visible surface feature rotate around 360 degrees is not possible. In 1963, Earth-based radar observations penetrated the cloud cover and were able to measure a rotation rate of 243 days; more surprising is that Venus rotates on its axis in the opposite direction from that of most planets, so-called retrograde rotation. Subsequent ground-based radar studies came up with inconsistent values for the length, differing by about six minutes. The Magellan spacecraft completed its 487 day orbital mapping program in 1991 and concluded the correct number was slightly different still: 243.0185 days with an uncertainty of about nine seconds. But subsequent missions and ground-based observations found that the rate of rotation was actually not constant but seemed to vary, with models arguing that solar tidal torques and atmosphere drag on the surface could account for at least some of the variation.

from Space Exploration News - Space News, Space Exploration, Space Science, Earth Sciences https://ift.tt/2MYtxZt

Comments

Popular Posts