Skip to main content

Featured

Mars and Earth - Small difference & big consequences

Einstein's theory of relativity suggests that time is not a constant and can vary based on gravitational fields and speed. In a strong gravitational field, time moves slower compared to a weaker one. Since Mars has a weaker gravitational field than Earth, time actually flows slightly faster there.  This concept has implications for future space missions, as the timing of communication and operation of spacecraft will need to account for this difference in how time elapses on Mars compared to Earth. Missions may need to adjust their schedules, operations, and technology to ensure accuracy and synchronization with Earth. Basically, the moment you bring gravity and velocity into the picture, time stops behaving like the simple, universal tick‑tock we experience in everyday life. And you’re absolutely right: Mars’ weaker gravity means clocks there run a little faster than clocks on Earth. What’s fascinating is how small the difference is—and how big the consequences become ...

Asteroid Ryugu likely link in planetary formation

The solar system formed approximately 4.5 billion years ago. Numerous fragments that bear witness to this early era orbit the sun as asteroids. Around three-quarters of these are carbon-rich C-type asteroids, such as 162173 Ryugu, which was the target of the Japanese Hayabusa2 mission in 2018 and 2019. The spacecraft is currently on its return flight to Earth. Many scientists, including planetary researchers from the German Aerospace Center (Deutsches Zentrum für Luft-und Raumfahrt; DLR), intensively studied this cosmic "rubble pile," which is almost 1 kilometer in diameter and can come close to Earth. Infrared images acquired by Hayabusa2 have now been published in the scientific journal Nature. They show that the asteroid consists almost entirely of highly porous material. Ryugu was formed largely from fragments of a parent body that was shattered by impacts. The high porosity and the associated low mechanical strength of the rock fragments that make up Ryugu ensure that such bodies break apart into numerous fragments upon entering Earth's atmosphere. For this reason, carbon-rich meteorites are very rarely found on Earth and the atmosphere tends to offer greater protection against them.

from Space Exploration News - Space News, Space Exploration, Space Science, Earth Sciences https://ift.tt/3b0oAK3

Comments

Popular Posts