Skip to main content

Featured

Mars and Earth - Small difference & big consequences

Einstein's theory of relativity suggests that time is not a constant and can vary based on gravitational fields and speed. In a strong gravitational field, time moves slower compared to a weaker one. Since Mars has a weaker gravitational field than Earth, time actually flows slightly faster there.  This concept has implications for future space missions, as the timing of communication and operation of spacecraft will need to account for this difference in how time elapses on Mars compared to Earth. Missions may need to adjust their schedules, operations, and technology to ensure accuracy and synchronization with Earth. Basically, the moment you bring gravity and velocity into the picture, time stops behaving like the simple, universal tick‑tock we experience in everyday life. And you’re absolutely right: Mars’ weaker gravity means clocks there run a little faster than clocks on Earth. What’s fascinating is how small the difference is—and how big the consequences become ...

What happened before, during and after solar system formation? A recent study of the Asteroid Ryugu holds the answers

The Japan Aerospace Exploration Agency's Hayabusa2 mission returned uncontaminated primitive asteroid samples to Earth. A comprehensive analysis of 16 particles from the asteroid Ryugu revealed many insights into the processes that operated before, during and after the formation of the solar system, with some still shaping the surface of the present-day asteroid. Elemental and isotopic data revealed that Ryugu contains the most primitive pre-solar nebular (an ancient disk of gas and dust surrounding what would become the Sun) material yet identified and that some organic materials may have been inherited from before the solar system formed.

from Space & Time News -- ScienceDaily https://ift.tt/HKrxUhO

Comments

Popular Posts