Skip to main content

Featured

Mars and Earth - Small difference & big consequences

Einstein's theory of relativity suggests that time is not a constant and can vary based on gravitational fields and speed. In a strong gravitational field, time moves slower compared to a weaker one. Since Mars has a weaker gravitational field than Earth, time actually flows slightly faster there.  This concept has implications for future space missions, as the timing of communication and operation of spacecraft will need to account for this difference in how time elapses on Mars compared to Earth. Missions may need to adjust their schedules, operations, and technology to ensure accuracy and synchronization with Earth. Basically, the moment you bring gravity and velocity into the picture, time stops behaving like the simple, universal tick‑tock we experience in everyday life. And you’re absolutely right: Mars’ weaker gravity means clocks there run a little faster than clocks on Earth. What’s fascinating is how small the difference is—and how big the consequences become ...

Webb looks for Fomalhaut's asteroid belt and finds much more

Astronomers used NASA's James Webb Space Telescope to image the warm dust around a nearby young star, Fomalhaut, in order to study the first asteroid belt ever seen outside of our solar system in infrared light. But to their surprise, the dusty structures are much more complex than the asteroid and Kuiper dust belts of our solar system. Overall, there are three nested belts extending out to 14 billion miles (23 billion kilometers) from the star; that's 150 times the distance of Earth from the Sun. The scale of the outermost belt is roughly twice the scale of our solar system's Kuiper Belt of small bodies and cold dust beyond Neptune. The inner belts -- which had never been seen before -- were revealed by Webb for the first time.

from Space & Time News -- ScienceDaily https://ift.tt/ILh2qNw

Comments

Popular Posts